Skip to Content

Mapping Gene “Social Networks” May Improve Disease Treatments

Genetic Interaction Map

Genetic interaction maps, like the ones above, provide a computer model to show how the functions of different genes in a yeast cell connect. Credit: University of Minnesota

Studying the way genes “socialize” could ultimately help scientists develop better treatments for diseases.

In a recent study, researchers from the University of Minnesota and University of Toronto collaborated to investigate the way genes function — not as independent actors, but as part of larger social networks. The team created the first complete genetic interaction network of a yeast cell, which begins to explain how thousands of genes within the cell coordinate with one another to orchestrate life at a cellular level. The study established a set of principles that scientists can use in creating genetic interaction maps across many different species, including humans, to learn more about how genes behave.

This technology may ultimately help scientists understand the genetic roots of diseases and aid in developing treatments to counter those diseases. For example, scientists could use gene interaction maps to develop cancer therapies that target only sick cells in the body, leaving the healthy ones untouched.

“Our work in yeast provides a blueprint for how we can learn about the human genome through systematic manipulation in cell lines,” said Chad Myers, Ph.D., associate professor of computer science and engineering with CSE.

Read about the research in Vice Motherboard.

Kevin Coss

Kevin Coss

Kevin is a communications specialist with the Office of the Vice President for Research.

coss@umn.edu

Latest Blog Posts

Chalkboard illustration showing new ideas and work leading to productivity

Early results from piloting a new way to manage Institutional Review Board submissions shows an improved turnaround time and increased employee engagement.

Read More
People work together in an office

MNSBIR guides startups and small businesses, including those based on U research, in applying for federal grants that help bring new innovations to market.

Read More
President Joan Gabel during an Inauguration Week event at McNamara Alumni Center.

Joan T.A. Gabel, the U's 17th president, emphasized the importance of the University research mission as part of her recent inaugural address.

Read More
Categories:
A student presents his research at a UMR poster fair

At UMN Rochester, in-course research experiences foster undergraduates' interest in science and help to prepare them for a successful career.

Read More