Skip to Content

Mapping Gene “Social Networks” May Improve Disease Treatments

Genetic Interaction Map

Genetic interaction maps, like the ones above, provide a computer model to show how the functions of different genes in a yeast cell connect. Credit: University of Minnesota

Studying the way genes “socialize” could ultimately help scientists develop better treatments for diseases.

In a recent study, researchers from the University of Minnesota and University of Toronto collaborated to investigate the way genes function — not as independent actors, but as part of larger social networks. The team created the first complete genetic interaction network of a yeast cell, which begins to explain how thousands of genes within the cell coordinate with one another to orchestrate life at a cellular level. The study established a set of principles that scientists can use in creating genetic interaction maps across many different species, including humans, to learn more about how genes behave.

This technology may ultimately help scientists understand the genetic roots of diseases and aid in developing treatments to counter those diseases. For example, scientists could use gene interaction maps to develop cancer therapies that target only sick cells in the body, leaving the healthy ones untouched.

“Our work in yeast provides a blueprint for how we can learn about the human genome through systematic manipulation in cell lines,” said Chad Myers, Ph.D., associate professor of computer science and engineering with CSE.

Read about the research in Vice Motherboard.

Kevin Coss

Kevin Coss

Kevin is a writer with the Office of the Vice President for Research.

coss@umn.edu

Latest Blog Posts

View of Washington Avenue Bridge in Minneapolis with downtown skyline in the background

Launch Minnesota aims to grow the startup ecosystem by connecting entrepreneurs with resources and education to help them bring new technologies to market.

Read More
Football players gathered at the line of scrimmage, about to start a play

Research into how neurons become damaged sets the stage for drugs or other treatments that could limit or prevent long-term harm following a concussion.

Read More
Waves in water

A recently launched online platform aims to help researchers from across the University system connect around water-related discussions and research.

Read More
Jimmy Randolph

Darcy Solutions' systems provide greater heating and cooling capacity using less above-ground space, making them easier to install in existing buildings.

Read More